On Finding Joint Subspace Boolean Matrix Factorizations
نویسنده
چکیده
Finding latent factors of the data using matrix factorizations is a tried-and-tested approach in data mining. But finding shared factors over multiple matrices is more novel problem. Specifically, given two matrices, we want to find a set of factors shared by these two matrices and sets of factors specific for the matrices. Not only does such decomposition reveal what is common between the two matrices, it also eliminates the need of explaining that common part twice, thus concentrating the non-shared factors to uniquely specific parts of the data. This paper studies a problem called Joint Subspace Boolean Matrix Factorization asking exactly that: a set of shared factors and sets of specific factors. Furthermore, the matrix factorization is based on the Boolean arithmetic. This restricts the presented approach suitable to only binary matrices. The benefits, however, include much sparser factor matrices and greater interpretability of the results. The paper presents three algorithms for finding the Joint Subspace Boolean Matrix Factorization, an MDLbased method for selecting the subspaces’ dimensionality, and throughout experimental evaluation of the proposed algorithms.
منابع مشابه
Scalable Boolean Tensor Factorizations using Random Walks
Tensors are becoming increasingly common in data mining, and consequently, tensor factorizations are becoming more and more important tools for data miners. When the data is binary, it is natural to ask if we can factorize it into binary factors while simultaneously making sure that the reconstructed tensor is still binary. Such factorizations, called Boolean tensor factorizations, can provide ...
متن کاملILU and IUL factorizations obtained from forward and backward factored approximate inverse algorithms
In this paper, an efficient dropping criterion has been used to compute the IUL factorization obtained from Backward Factored APproximate INVerse (BFAPINV) and ILU factorization obtained from Forward Factored APproximate INVerse (FFAPINV) algorithms. We use different drop tolerance parameters to compute the preconditioners. To study the effect of such a dropping on the quality of the ILU ...
متن کاملAcoustic correlated sources direction finding in the presence of unknown spatial correlation noise
In this paper, a new method is proposed for DOA estimation of correlated acoustic signals, in the presence of unknown spatial correlation noise. By generating a matrix from the signal subspace with the Hankel-SVD method, the correlated resource information is extracted from each eigen-vector. Then a joint-diagonalization structure is constructed of the signal subspace and basis it, independent...
متن کاملState-space analysis of Boolean networks
This paper provides a comprehensive framework for the state-space approach to Boolean networks. First, it surveys the authors' recent work on the topic: Using semitensor product of matrices and the matrix expression of logic, the logical dynamic equations of Boolean (control) networks can be converted into standard discrete-time dynamics. To use the state-space approach, the state space and its...
متن کاملNonnegative Matrix Factorizations Performing Object Detection and Localization
We study the problem of detecting and localizing objects in still, gray-scale images making use of the part-based representation provided by non-negative matrix factorizations. Non-negative matrix factorization represents an emerging example of subspace methods which is able to extract interpretable parts from a set of template image objects and then to additively use them for describing indivi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012